Eigenvalue bounds of mixed Steklov problems
نویسندگان
چکیده
منابع مشابه
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of t...
متن کاملNonconforming finite element approximations of the Steklov eigenvalue problem
Article history: Received 27 November 2008 Received in revised form 27 March 2009 Accepted 22 April 2009 Available online 3 May 2009 MSC: 65N25 65N30 65N15
متن کاملOn the First Eigenvalue of a Fourth Order Steklov Problem
We prove some results about the first Steklov eigenvalue d1 of the biharmonic operator in bounded domains. Firstly, we show that Fichera’s principle of duality [9] may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d1 for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problem...
متن کاملThe first biharmonic Steklov eigenvalue: positivity preserving and shape optimization
We consider the Steklov problem for the linear biharmonic equation. We survey existing results for the positivity preserving property to hold. These are connected with the first Steklov eigenvalue. We address the problem of minimizing this eigenvalue among suitable classes of domains. We prove the existence of an optimal convex domain of fixed measure. Mathematics Subject Classification (2000)....
متن کاملA two-grid discretization scheme for the Steklov eigenvalue problem
In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the tw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2019
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199719500081